Der bliver ikke nogen Singularity

Fora ASTRO-FORUM NYT FRA VIDENSKABEN Der bliver ikke nogen Singularity

Tagget: ,

Dette emne indeholder 1 svar, har 1 stemme og blev senest opdateret af Bjarne 11 måneder, 1 uge siden. This post has been viewed 212 times

Viser 2 indlæg - 1 til 2 (af 2 i alt)
  • Forfatter
    Indlæg
  • #319135

    Bjarne
    Moderator
    • Super Nova

    Forfatter: Singularity er dårlig science fiction uden science

    En taxa-tur med teknologi-kommentatoren og forfatteren Bruce Sterling fører til døden for en elsket teknologi-lov. En død med konsekvenser for Singularity og Danmark.

    Dan Mygind redaktion@ing.dk

    »Der bliver ikke nogen Singularity. Det er en vrangforestilling.«

    Ordene kommer fra teknologi-kommentatoren, Wired-skribenten og science fiction-forfatteren Bruce Sterling, som sidder klemt inde mellem sin kone, Jasmina, og Version 2’s udsendte på bagsædet af en taxa på vej mod Københavns Lufthavn.

    Bruce Sterling har kort forinden holdt den afsluttende keynote på Techfestival i København og er nu på vej med sin kone for at fange et fly til Estland, hvor andre tech-interesserede vil lytte til hans tankevækkende perspektiv på teknologi.

    Singularity bliver udskudt

    Når forfatteren, der sammen med William Gibson startede cyberpunk-genren, betegner Singularity-fortællingen som »dårlig science fiction uden science«, er der grund til at spidse øren.

    Begrebet Singularity blev introduceret af den amerikanske datalogi-professor og science fiction-forfatter Vernor Vinge i essayet ‘The Coming Technological Singularity: How to Survive in the Post-Human Era’ fra 1993.

    Her forudså Vernor Vinge, at 30 år ude i fremtiden, i år 2023, vil menneskeheden have teknologien til at skabe overmenneskelig intelligens, og kort efter vil den menneskelige æra være ovre.

    Det er om 5 år.

    Essayets budskab faldt i god jord i Silicon Valley, og i 2008 blev tænketanken Singularity University oprettet af Ray Kurzweil og Peter Diamandis. Specielt Ray Kurzweil er blevet en bannerfører for Singularity-bevægelsen.

    Han er ansat hos Google som director of engineering og udgav bogen ‘The Singularity is Near – When Humans Transcend Biology’ i 2005. Her beskriver han, hvordan eksponentiel vækst inden for informationsteknologi, bioteknologi, nanoteknologi og anden teknologi vil skabe en fremtid, hvor mennesker bryder fri af begrænsningerne, som vores hjerne, krop og biologiske væsen sætter for os.

    Ray Kurzweil lægger dog nogle ekstra år til Vernor Vinges forudsigelse. Ifølge Ray Kurzweils vil Singularity indtræffe i år 2045.
    Moores lov er død.

    Men ifølge Bruce Sterling har ideen om eksponentiel vækst og innovation, hvilket er forudsætningen for Singularity, ikke hold i en teknisk virkelighed. Det gælder eksempelvis udviklingen inden for mikroprocessorer.

    Moores lov om mikroprocessorers udvikling foreskriver, at antallet af komponenter på en mikrochip fordobles hvert andet år. Loven har dog været sat ud af kraft i de seneste år, da chip-producenterne ganske enkelt ikke kan skrumpe chip-komponenterne hurtigt nok.

    De støder simpelthen ind i begrænsninger sat af fysiske naturlove.

    I produktionen af de nyeste chip, hvor de enkelte chip-komponenter blot er 10-14 nanometer store (eller rettere små), anvendes lys med en bølgelængde på 193 nanometer.

    Der eksisterer produktionstekniske krumspring, der gør den slags muligt, men fremstillingsprocessen er kompliceret, dyr og årsag til forsinkelser. Eksempelvis var Intels kommende Cannonlake-chip baseret på 10 nanometer-teknologi oprindeligt planlagt til at blive lanceret i 2016.

    Den seneste melding er nu i slutningen af 2019.

    Samtidig lurer kvantemekaniske kvababbelser i horisonten. Kommer man ned på 2-3 nanometer-teknologi, består en enkelt transistor blot af 10-15 atomer, hvilket introducerer kvantemekaniske usikkerheder, der reelt gør komponenterne upålidelige.

    »Moores lov er død,« opsummererer Bruce Sterling lakonisk.

    Dansk Singularity-begejstring

    Det handler ikke kun om filosofiske overvejelser, som hvorvidt eksponentiel vækst er mulig eller ej.

    Singularity-tankegangen har fået godt fat i danske beslutningstagere, der er med til at udstikke retningslinjerne for den digitale udvikling i Danmark.

    Singularity University etablerede forrige år sit nordiske hovedkvarter i København – Let’s Make the Nordics Exponential, som det hedder på SingularityU Nordic’s hjemmeside.

    I pressemeddelelsen om åbningen blev daværende erhvervsminister Brian Mikkelsen citeret for, at Singularity Universitys tilstedeværelse i Danmark vil give danske virksomheder mulighed for at komme på forkant med den teknologiske udvikling.

    Siden har SingularityU Nordic holdt velbesøgte konferencer og kurser med en række beslutningstagere fra offentlige myndigheder og private virksomheder som deltagere.

    I dag er Brian Mikkelsen direktør for Dansk Erhverv, hvor hans Singularity-begejstring tilsyneladende deles af underdirektør Niels Milling.

    På Niels Millings LinkedIn-side er listet et uddannelsesophold hos Singularity University i San Francisco i 2016.
    Interessante, utopiske fortællinger, men bullshit.

    Jeg spørger derfor Bruce Sterling, hvad han vil sige til danske politikere og forretningsfolk, der har købt visionen om eksponentiel udvikling:

    »Det kommer ikke til at ende godt. Og det er egentlig allerede slut. Folk taler, som om der stadig er det her kæmpe boom, hvor Moores lov forandrer alting, og Singularity er nær, men det kan ikke være længere fra virkeligheden. Der er ingen Singularity, og vi befinder os i en æra af industrikonsolidering i tech-verdenen.«

    Han kan dog godt forstå, at ministre, politikere og beslutningstagere er interesserede i Singularity.

    »De har en spændende fortælling, men det er lidt den samme fortælling fra rumfartsalderen og atomalderen: Mennesker vil snart leve overalt i solsystemet, og energien bliver så billig, at det ikke kan betale sig at måle energiforbruget. Det kom ikke til at ske. Det samme vil være tilfældet med Singularity-fortællingen, det er bullshit, det kommer ikke til at ske,« forudsiger Bruce Sterling.

    Han har tidligere udtalt, at der ikke er en forretningsmodel for Singularity, da der ikke er noget reelt produkt, men tilsyneladende har SingularityU Nordic fundet en forretningsmodel i form af kurser og konferencer.

    »Det er ikke forskelligt fra andre religiøse ting. Jeg mener, Scientology har en forretningsmodel i Danmark, men det gør dem ikke bedre. Star Wars-filmene har en forretningsmodel; du kan sælge illusioner til folk, jeg siger blot, at teknisk kommer det ikke til at fungere.«

    Lige inden Bruce Sterling gik op på Circle Stage i Kødbyen og gav sin afsluttende keynote, havde jeg sammen med 149 andre tech-personer præsenteret en række etiske tech-principper, der skal sørge for, at teknologi anvendes til at gøre samfundet og det enkelte menneskes liv bedre. En af deltagerne havde skrevet følgende: ‘Singularity is Near – But Reality is Nearer’.

    Citat slut!

    Jeg er ikke enig i, at problemet er enden på “Moores lov”. Man kan jo bare fortætte med udviklingen af clusters til at omfatte millioner af computere.

    Det egentlige problem er, at Google (af naturlige årsager) definerer kunstig intelligens som Deep-Learning i eksisterende statiske data. Deep-Lerning er en fancy søgemaskine for eksisterende Big-Data. Man kan opfate et skakspil som et statisk træ af beslutninger. Der er tale om Big-Data defineret ved de faste regler for spillet.

    Man kan med søgning ikke finde nye ikke-eksisterende ting, men man kan finde velbeskrevne kendte ting. AI i form af Deep-Learning kan ikke opfinde ting: AI er ikke innovativ.

    Begejstringen for AI svarer til begejstringen for radium efter dets opdagelse i 1911. Det blev solgt som et vidundermiddel mod alle former for sygdomme.

     

    #319143

    Bjarne
    Moderator
    • Super Nova

    Man kunne af ovenstående få det indtryk, at idèen om generel kunstig intelligens og den eventuelle teknologiske singularitet er opfundet i Silicon Valey. Dette er imidlertid forkert. Idèen blev først fremsat i 1965 som Speculations Concerning the First Ultraintelligent Machine af Irving John Good, hvis rigtige navn var Isadore Jacob Gudak:

    Isadore Jacob Gudak

    I. J. Good arbejdede som statistiker og kryptograf i England. Hans tilgang til statistik var anderledes end den traditionelle statistiske skole under ledelse af Sir Ronald Fisher, som helt støttede Bertrand Russells opfattelse af årsag og virkning: Årsag og virkning er begreber fra filosofien, som er helt uden hold i virkeligheden. Statistiske relationer er ikke et udtryk for en kausal sammenhæng. Good havde derfor problemer med at få bevillinger til sin forskning. Det er vanskeligt at finde et abstract af artiklen fra 1965, når jeg anvender VPN (men her er et):

    Speculations Concerning the First Ultraintelligent Machine

    Publisher Summary

    An ultra-intelligent machine is a machine that can far surpass all the intellectual activities of any man however clever. The design of machines is one of these intellectual activities; therefore, an ultra-intelligent machine could design even better machines. To design an ultra-intelligent machine one needs to understand more about the human brain or human thought or both. The physical representation of both meaning and recall, in the human brain, can be to some extent understood in terms of a subassembly theory, this being a modification of Hebb’s cell assembly theory. The subassembly theory sheds light on the physical embodiment of memory and meaning, and there can be little doubt that both needs embodiment in an ultra-intelligent machine. The subassembly theory leads to reasonable and interesting explanations of a variety of psychological effects.

    Bemærk: En sådan maskine skal inkludere både hukommelse og forståelse.

    Good flyttede til Virginia Tech, USA, kort tid efter.

    Nekrolog i The Telegraph

    Professor Jack Good

    Professor Jack Good, who died on April 5 aged 92, made fundamental contributions to probability theory, drawing on ideas developed while working as a codebreaker at Bletchley Park during the Second World War; later on he advised Stanley Kubrick on the computer with a mind of its own in the film 2001 – A Space Odyssey, and popularised the board game Go.

    A statistician by training and a county chess champion, Good was recruited to Bletchley Park from Cambridge in 1941. By the time he arrived, the German Air Force and Army Enigma codes had been broken, but their naval Enigma code remained frustratingly difficult to decrypt – a major problem at a time when supply lines from North America were being threatened by U-boats.

    Initially Good was assigned to Hut 8 working with Alan Turing and Hugh Alexander, who were already using machines known as “bombes” to discover the Enigma wheel settings, based on complex algorithmic “cribs” devised by Turing using a branch of probability theory known as Bayesian statistics. During this early period, the mathematician Max Newman, working in another hut, had established a program to use electronic methods of decipherment and had recruited Donald Michie, an Oxford classicist, to help him.

    In 1943 Good moved from Hut 8 to the “Newmanry” to work with Michie on the use of machine methods for decrypting a German cipher system known as “Fish”. The first machine, appropriately christened the “Heath Robinson”, used vacuum tubes, was highly unreliable, and thus required extensive statistical work to back it up. A particular problem, apart from the frequent failure of the vacuum tubes, was that the paper tapes containing the intercepted signals were fed in at very high speed and tended to snap. Good recalled being able to tell when the machine was going wrong by the sound it made – and even by the smell.

    But thanks to their efforts the Heath Robinson worked well enough to show that the basic concept was sound, and the two men went on to use their joint expertise to develop the code-breaking technologies underpinning the Colossus machines. These, the world’s first programmable, digital electronic computers, were developed just in time for the Normandy landings and marked the beginning of the modern computer revolution. Good and Michie developed ways of using the machines to help in “pin breaking” – deciphering the pin patterns of the wheels used in the German Lorenz encryption machines, which were periodically changed.

    After the war, Good went with Turing to the University of Manchester to work with Newman on statistical and mathematical computing, and in his spare time began to develop the field of Bayesian statistics. He went on to play a leading role in the development of Bayesian statistics as a practical tool for assessing probability and risk in fields ranging from medicine to defence strategy.

    He was born Isidore Jacob Gudak in London on December 9 1916 to Polish-Jewish parents, but later anglicised his name to Irving John Good. His father was a watchmaker and a dealer in antique jewellery.

    Although he was slow to learn to read, “Jack” Good’s mathematical genius was clear from an early age. In bed with diphtheria aged nine, he “discovered” the irrationality of the square root of two and found an infinity of solutions to the equation: 2x² = y² ± 1. By the age of 13 he had independently “discovered” mathematical induction and integration.

    At Haberdashers’ Aske’s School, Hampstead, Good amazed his maths master by working out the solutions to a series of exercise questions before the man had finished writing them on the blackboard. His teachers soon reached the limits of what they could teach him and left him to pursue his mathematical studies on his own in the school library. By the time he won a scholarship to Jesus College, Cambridge, he had already covered much of the undergraduate syllabus.

    Good graduated in 1938, and the next year won the Cambridgeshire chess championship. He won the Smith’s mathematical prize and completed a doctorate on “The topological concept of partial dimension based on the ideas of Henri Lebesgue”, under GH Hardy. In 1941 Good was interviewed by Hugh Alexander, the reigning British chess champion, for a job in the “Civil Service”, and on May 27 1941 – the day the Bismarck was sunk – found himself installed at Bletchley Park.

    Good got on particularly well with Turing, with whom he played chess and who introduced him to the Chinese strategic board game Go. After the war Good played Go with the mathematician Roger Penrose and helped to popularise the game in Britain through an article published in New Scientist in 1965.

    In 1947 Good accepted Newman’s invitation to join him at the University of Manchester to work with him and Turing on a computer based on Turing’s designs. Along with Tom Kilburn and Fred Williams, Good played a role in the development of the “Manchester Mark I”, the first computer in the world to be controlled from an internally-stored program.

    In 1948 Good returned to government service within the Government Communications Headquarters (GCHQ). It was during this time that he published his first book, Probability and the Weighing of Evidence (1950), which expanded on “Bayesian” concepts of probability which he and Turing had been working on during the war.

    In 1959 he joined the Admiralty Research Laboratory. Five years later, after a series of consulting positions, he returned to academic life as a senior research fellow at Trinity College, Oxford, where he was associated with the Atlas Computer Laboratory. Three years later, finding Oxford “a bit stiff”, he decided to take up a chair in statistics at Virginia Polytechnic Institute and State University (Virginia Tech).

    In the later years of the war, Good and Donald Michie had fantasised about the idea of machines that were capable of learning, and in 1964 Good published a paper on Speculations Concerning the First Ultraintelligent Machine which was quoted by Arthur C Clarke in his 2001: A Space Odyssey to explain how his spaceship computer, the HAL 9000, had acquired a mind of its own. One of Good’s first assignments in America was to advise Stanley Kubrick on his film adaptation.

    Good’s published work ranged from statistics, computation and number theory to the philosophy of mathematics and science. In addition to numerous papers and articles, his books included The Estimation of Probabilities: an Essay on Modern Bayesian Methods (1965) and Good Thinking: the Foundations of Probability and its Applications (1983).

    Like other members of staff at Bletchley Park, Good was unable to talk about his wartime work for many years, though he allowed himself an oblique reference to his clandestine past in his car number plate: 007 IJG.

    Later he contributed a chapter on “Enigma and Fish” in Codebreakers: The Inside Story of Bletchley Park (1994), edited by Harry Hinsley and Allan Stripp.

    Good served on numerous scientific committees and won several awards and honours. In 1985 he was elected a Fellow of the American Academy of Arts and Sciences.

     

    • Dette svar blev ændret 11 måneder, 1 uge siden af Bjarne.
    • Dette svar blev ændret 11 måneder, 1 uge siden af Bjarne.
    • Dette svar blev ændret 11 måneder, 1 uge siden af Bjarne.
    • Dette svar blev ændret 11 måneder, 1 uge siden af Bjarne.
Viser 2 indlæg - 1 til 2 (af 2 i alt)

Du skal være logget ind for at svare på dette indlæg.